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THE TILTING MODE IN FIELD-REVERSED CONFIGURATIONS

Jo L., Schwarzmeisr, D. C. Barnes, H. R. Levis,
C. E. Seyler, and A. I. Shestakov

Field Reversed Configurations (FRCs) experimentally have exhibited
remarkable stability on the magnetohydrodynamic (MHD) tinelcnle,1'3 despite
numerous MHD calculations showing FRCs to be unstable. % 11 1t 1s easy ;0 believe
that local modes are stabilized by finite Larmor radius (FLR) effects, but more
puzzling is the apparent atability of FRCs against global modes, where one would
expect FLR effects to be less important. In this paper we study the tilting
mode, whick MHD has shown to be a rapidly growing global mode. The tiltiig mode
in FRCs is driven by the pressure gradient, and magnetic compression and field
line bending are the stabilizing forces. A schematic of the evolution of the
tilting mode is shown in Fig. 1. The tilting mode is considered dangerous,
because it would lead to rapid tearing across the eeparatrix (see Fig. lc).
Unlike sphuromaks, the ¢tilting mode in FRCs has a seraratrix that is fixed in
space, so that the mode is strictly internal.

MHD Resuits

We have studied the MHD stability of the tilting mode with two independent
codes}2: a tria) function code that computes eigenfrequencies, and a linear time
dependent MHD simulation corde. The principal conclusions from our linear MHD

calculations are:

1.) All YRC equilibria with {flux surfaces ranging from elliptical to highly
vscetrack are unstable to tilting with typical growth times (for FRX-B)

vy ~ lus, wheraas experimentsl lifetimes are 71)4,, ~ 20-40us. (See Fig. 2a-c.)

2.) TE. dilgllc.ncnt E in the (r,z)-plane is primarily axial, En + El ~ ;l;.
vhere {, and {, are the .ormal and parallel displacenents of a fluid element
from a flux surface ({, is deterained from incompressibility). 1If ¢ labels &
flux surface and s is the arclength along a PB-line, we find that §,(y=0,s) = 0.
That 4s, the axial displacament vanishes 2t the separatrix, ¢ = 0. This means
that the tilting mode is internal, so tie calculation is carried out in y~space
from ¢ = -1 (O-point) to ¢y = 0. (Bee Fig. 2d-f.)
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3.) For elliptical equilibria each flux surface has a rigid axial dieplacement,
tz(p,u) ] Ez(w), and the maximum displacement occurs at the O-point, (See
l’ig. Zdo)

4.) For rtacetrack equilibria zz(w.n) is a strong function of s, with the axial
displacement localized to the tipe of the flux surfaces. (See Fig. 2e,f.)

Several reasons have been proposed for the observed stability of FRCs
against tilting: 1) Though unstable the instability saturates at low amplitude
(the 3-D MALICE code shows this is not true for elliptical equilibriaj;; 2)
Nonideal effects might stabilize the mode (Shestakov’s resistive linear MHD code
still shows instability); 3) FRC spin-up might stsbilize the tilt (but 1, >>
7'1); 4) Kinetic effects might be important :sen for this giobal mode. We feel
that the last possibility is the mos. 1likely, particularly since there ace
"betatron" particles that have large radial orbits about the field null (see
Fig. 3b).
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Figure 1. BSchematic evolution of the tilting mode. &) Equilibriua state, b)
Linear mode is an axial shift of flux surfaces, c) Noniirear mode may lead to
tearing in dashed circula- ‘agions.
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Fig. 2 Realistic numerical equilibria, (a) elliptical case, (b) FRX-B
parameters, (c) highly racetrack casa. For each equilibrium (a)-(c), in
(d)-(£f) are shown the corresponding projections of the displacement vector { in
the (r,z)-plane from the initial value code.

Kinetic Treatment
An exact linear stability formslism for inhomoganeous Vlasov-Maxwell systems

has been devised by lLewis, Symon, snd Seyler.l3 Seayler and Barne514 used thie
formalism to study kinetic effects on the tiliing mode with the Vlasov-fluid
nodel (Vlasov ions; cold, massless electrons). lat fl(a,ﬁ;u) be the Llaplace
transform of the first order distribution function of the ione. Since 6 is an
ignorable coordinsta of the equilibrium, all perturbation quantities have
¢~dependence of 01“9, where n is a fixed integer for the probdlem. In general we

can expand
£,(3,8;0) = L Ip(w) v (W) (1)
r
The functions v 8 are the Liouville eigenfunctions, and they satisfy

Lvy = 4y vy, (2)
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where L is the equilibrium Vlasov operator given by the Poisson bracket of the
equilibrium Hamiltonian, L = [ ,H]. i, 1s the Liouville eigenvalue, and it is a
sum of terms containing integral multiples of the bounce frequencies of all the
periodic equilibrium particle motions. The subscript r etands for the set of
sirgle particle invariants that labeals a particular orbit, as well as a ae: of
integers that labels harmounics of the equilibrium bounce motions. The gum over
r in Eq. (1) means sum over all discrete labele and integrate over all
continuous labels. In the case that there are three (exact or adiabatic)
constants of the single particle motion in the equilibrium fields, then the
Liouville eigenfunctions ur(a,ﬁ) can be found explicitly in terms of int-gralse
of equilibrium quantities. When the form (1) is substituted into the 1linear
Vlasov equation the coefficients T (w) can be found in (erms of the perturbation
E(f;u). When that result for fl 18 substitute® into the source terms of the
linearized Maxwell’s equations, one obtains a homogeneous integro-differential
equation to be solved for E. In the case of the tilting mode for elliptical
FRCs, E(?;w) + E,(y;w), so the linearized equations of motion have the general
form

D(y;w) E,(¥;w) = 0, (3)

where L 18 the dispersion operator. Equation (3) can aliso be obtained from the

variation of the dispersion functional A, defined by
* . *
A(E3.Eg) = (E,,DE,) 3 [ d3r £} D £,

with respect to E:. In the Vlasov-fluid model the dispersion functional has the

form
+ + +
8= -20w - 22 [ a3 ¢*(ExB) - V =0, (4)
c
where &W is exactly the MHD incompressible potential energy, and the kinetic

terus ara contained in V, defined by

(g1
V(w) = 0 I f(E) — 2, (5)
b9 N-r - W

where fo(E) is the equilibrium ion distribution function, and E is the total



-5

energy of a particle. In Eq. (5) H; 1s the s'ngle particle perturbation
Hamiltonian

et * + > > > ‘
The secornd half of Eq. (6) follows, aince in the Vlasov-fluid model one writes ;1
> > > > -
- 5xn°, and the gauge choice is ¢, = E°E . (wt,Hl) = f d3qd3p w, H; 1s the
orbit 1integral of the perturbation Hl along the orbit r, and the particle
regsonances occur when b ~we 0. For FRCs the energy E end canonical angular
momentum pg, 4&re exact invariants, and in the work of Seyler and Barnes “t was

agsumed that the magnetic moment p is an adiabtic invariant. In the 1limit of

small Larmor radius this leade to a dispersion functional of the form

a
-~

A= -26W + 202K + wF - R(w) = O. (7)

K 1s the MHD kinetic energy normalization, F contains the FLR terms, and R
contains parallel kinetic effects and particle resorances. If one neglects R
and solves Ea. (7) for w, 1t 1s easy to show that the FLR term F has a
stabilizing effect.

Neglecting the R term in Eq. (7) leads to a 2nd order ODE for £.(¥). The
first case to consider ie the pure MHD 1limit, where F ima neglected. One
boundary condition is that Ez(w-O) = 0, and the other boundary condition 1is
really a regularity condition that eliminates the seirgular (logarithmic)
solution of Ez(w) about the O-point. The regular solution has €y going to a
(nonzero) constant as § + =]1. However, when one adds the F term one finds that
eliminating the singular solution of §, «t the O-puint leads to a regular
solution that vanishes at the O-point. That is, the addition of any amount of
FLR terms, no matter how small, leads to a completely different behavior of the
solution in the vicinity of the O-point. This result is unphysical and
indicates that the small Larmor radius treatment of the iona in the vicinity of
the field null is incorrect.

A correct kinetic treatment of the tilting mode in an FRC should recognize
that there are large ion orbits, enpecially for thLe batatron particles. This
introduces two significant complications into the problem. First, large ion
Larmor radii mean that a local approximation is not valid, and hence the full
integro-differential equation wmust be dealt with. Sacond, to even obtain
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expressions for the orbit integrals we need to have another adiabactic invariant

to replace u, which is not invariant for large orbit ions.

Adiabatic Invariants

In order for y to be an adiabatic invariant it is necesssry that B change
little during ome cycloidal period of the particle motion. In current FRCs the
radial graldient of the B-field near the separatrix is sufficiently steep that a
thermal ion feels a strong variation in B during a radial oscillation. Figure 3
shows particle trajectories for two different therwal ions in the (r,z)-plane
for the Spencer-Hewett equilibrium corresponding to FRX-B. In Fig. 3a, b7 the
time the (cycloidal) particle has reached z = 1 it has h-d & variation in y of
Ay ~ t65Z, while AJ ~ 211X, where J 1s an adiabatic invariant, defined 1in
Eq. (12), with which we replace y. 1In Figiaab. the (betatron) particle has a
maximum variation in J of AJ ~ 182, aud for this particle u 1s wmcaningless.
(For FRX-C parameters the variations in u.nnd J are about 50% of what they are
for FRX-B parameters.) This means that for current FRCs it is never valid to
assume that y 1s an adiabatic invariant, which in turr means t at not only 1.
MHD an invalid model for FRCs, but a guiding center description also is invalid.

Fortunately there rerains one small parameter of current FRCs that can be
exploited to provide an adiabatic invariant to replace py. That small parameter
is the alongation of the plasra, €. Typically for an FRC € is 1in the range
15 € g €.25. We will see that the radial action J is an adiabatic invariant
for elongated FRCs.

The equilibrium eingle particle Hamiltonian 1is (pe is a paramaeter
throughout)

oy

Figure 3., Particle trajectorias spd flux surfaces for a) cycloidal particle,
and b) betatron particle, using FRX-5b parmseters.
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2 2
Pr z
H(r.Pr,Z,pz) -—E+F+ u(r,z), (8)

wherz the two dimensional potential 1is

[pg-ew(r,z)/c)?
U(r,z) = + ed(y), 9
2ur?

and ¢ is the electric potential determined from ion pressure balance. The
highly elongated nature of FRCs manifests itself in that the potential variation
in z is much "slower" than it is in r. (This 18 true except for a highly
racetrack equilibrium, where all the axisal variation occurs at the tip of the
flux surface on the same spatial scale length =<8 the radial wvariation. See
Fig. 2c.) Thus to do the perturbation theory for alow z variation we replace

~
7,

U(r,z) + U(r,ez), (10)

treat € as small in the analysis, and then at the end let ¢ + 1. The goal of
this perturbation analysis is to produce the Hamiltonian that determines the
radial and axial motion to lowest order in e¢. A repult of this procedure 1s
that the radial action J, defined by

J(E,,ez) = ?%-‘ dr p.(r,E ,¢€2), 112)
is an adiabatic invariant :

%%.- 0+ 0(;2). (13)
The p, in Eq. (12) 1s

pe(r,E ,e2) = {2m[E, - U(r,ex)]}/2, (14)
vhere E  1is a constant value of the radial Hamiltonian H

2
P
Ho(r,pr,cz) - 7£;-+ U(r,ez) = const. & Ege (15)

(o}

Yor each ¢ in Eq. (15), E, varies over a range of values. For each z and B, in
Eq. (12), J has & certain value. The relation J = J(Eo,cz) can be inverted *o



give E  as a function of J and cz: E, = KO(J,cz). By using multiple time scale
analysis on z as . function of time, it can be shown that the Hamiltonian that
produces the lowest order radial and axial motion is

2
Pe 2
K(J,z,p,) = KO(J,ez) +.?Er + 0(e“). (16)

Essentially wve have transformed coordinates (r,pr) + (¢,J), vhere ¢ 18 the angle

variable conjugate to J, and we have eliminated ¢ frcm the Hamiltonian to order

cz. The function ¢ = ¢(r,pr) can be found in the usual way from the generating

function F(r,J), wvhere p, = 3F/3r. By solving Eq. (16) for p, and using the
equation dz/dt = p,/m, ve can show that the (slow) axial time of a particle’s
position is (letting € + 1)

~
~

T(Z) - fz dz'

. , (17)
21" {2E - Ky(3,2)1}/2
m

where E 18 a constant value of the total Hamiltounian K in Eq. (16). 1f z, and
z, are the two turning points of the axial motion, then the axial perind Tz is a
function of E, J, and Pe.

0f course, J (or yu for that matter) is not an adiabatic constant of the
motion for particles that pass in the vicinity of the spindle point. In fact,
particles with positive Pg have orbits that are not confined axially (see
Fig. 3a), so these particles are lost through the spindle point region in an
axial transit time. Since the tilting mode has a displacement that vanishes at
the separatrix, one can only hope that difficulties assoclated with the spindle
point are not an essential part of the stabilization of the tilting mode.

Now that we have the Hamiltonian K that describes the lowest order radial
and axial motion, we can retura to Eq. (2) to find to lowest o¢der in ¢ the
Liouville eigenfunctions and eigenvalues. The details of this calculation are
lengthy so we merely present the results. In terms of the canonical coordinates
(Q,J;r.E;O.pB) we have

ind

w,(6,J,7,E,8,pg) = d, 8(E-E*)8(J-J")6(pg-pple” " u (9,1, (18)

vhere



-9~

up(¢,1) = exp{i[2¢ + £08,73(7) + Pt + nlgTo(1)]}, (19)

and d. 1s a normalizing factor. E°, J°, and py are continuocus indices (i.e.,
numbers), and 2 and p are any integers; these quantities collectively denote the
label r. The operator L commutes with multiplication by any function of the
constarts of the motion, and L also commutes with 3/36. Thus W, can be chosen
to be a simultaneous eigenfunction of these operators, and this explains the
delta-functions and the i@ in Eq. (18). The dependence of u, on ¢ and ¥
(corresponding ¢t . the two nonignorable directions of the equilibrium, r and z)

i8s chosen liere so that
u (¢+2n, T+T,) = u (¢, 1). (20)

That is, Eqs. (18-19) are the w

expression could be writtem for particles whone orbtits are mnot confined

r for particles that are trapped; a sivilar

spatially. The remaining quantities in Eq. (19) are given by

K, (J,pgsz(T1)) m dr -1
we(T) = N 2 (4 Pr(r,3,pg,2(1))
1
a, -.T: §dr wy (1)
11(1) -7 - _nl; Ode-r' u)o(-r.)
ﬂz - Z'I/Tz
1
flg » T: § d1 wg(1) (21)
a, o dr vez(!'.l(‘l'))
wo(T) o ‘
2n Pr(r.anevZG)) r

vglr,z) = [pg - ey(r,z)/c)/m

T r
T(T) = 1 --ﬁl- 0[ dt’ wg(t”)

6

All quantities in (21) can be calculated from the equilibrium, and they are

functions of the constants E, J, and pg. The Liouville eigenvalue 1is



u = 20, + pR, + nfy, (22)

and clearly u, =~ w = 0 describes resonances between the wave and harmonics of
the radial, axial, and azimuthal drift motions of the particles.
Kitn the Liouville eigenfunctions defined by (18} we can simplify the orbit

integrals as

(we,Hy) +d. §dé 6 dr up(e,1) H(r,z,E,(¢9))- (23)

y(r,2z) 1s known from the equilibrium, and we can expand

N
Ey(y;w) = 11'::‘lan(m) UNEDR (24)

a
”

where {nn} is a chosen eet of expansion functions, and the cocfficients & are

n
to be found. Thus Hl(r,z,Ez) can be written as a function of r and z. By using
the transformations r = r(¢.J,p9.z) and z = z(r,E,J,pe). we Car express
Hl(r.Z.Ez) - f(¢,1;{au}). Finally, the sum over r in the kinetic term V of

Eq. (5) meane that

I » dE’ daJ’ dpy,” T . (25
r f { f Po L,p )

A dispersion matrix D, ,.(w) 1is constructed from the dispersion functional as
»

da
Dn.nl(w) = ———————

L
aﬂn Ban'

and the eigenfrequercy w is determined by requiring that
det D{(w) = U.

The procedure just outlined 1is a cowmpletely general formulation of the
kinetic tiiting calculation. The numerical computations involved ' are
formidable, but we hope fessible. It may be necessary to approximate various
aspects of the kinetic term V of Eq. {(5) before numerical evaluation begins.
For instance, the highly elongated nature of FR's implies that the time scales
of the radial, azimuthal, and axial motions are quite separated from one

another, with
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ﬂo >> fg >> Q,. (26)

This means that 1/(u, - w) 18 emall, except for £ = 0. Additional
approximations in the orbit integrals may also be possible.

In summary, che MHD analysis of the tilting mode in F°Ce has beer completed,
with the conclusion that all FRC equilibria should be very unstable to tilting.
0f the poseible reasons for explaining the observed stability of the
experiments, kinetic effects appear fo us to be the most likely stabilizing
mechanism. This problem 1s& very difficult, because the equilibrium is
tvo-dimensional and the mode is global. The magnetic moment p is not conserved
for current FRC parameters, but the radial action J 18 a suitable adiabatic
invariant for elongated equilibria. We have obtained a ygeneral expression for
the dispersion functional for the kinetic tilflng calculation which i3 in a form
suitable for numerical evaluation. Possible analytical approximations of the

problem have been indicated.
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